Skip to main content

🦾 Supported models and variants

Use one task notebook from examples/notebooks/, then choose a model key from this page.

Naming templates

VariantKey template
Base<model_key>
LoRA<model_key>_lora
INT8<model_key>_int8
LoRA + INT8<model_key>_lora_int8
LoRA + K-bit (INT4 flow)<model_key>_lora_kbit

Model keys

ModelBase keyAvailable variants
BLOOM 1.1Bbloombase, lora, int8, lora_int8
Cerebras 1.3Bcerebrasbase, lora, int8, lora_int8
DistilGPT-2distilgpt2base, lora
Falcon 7Bfalconbase, lora, int8, lora_int8, lora_kbit
Galactica 6.7Bgalacticabase, lora, int8, lora_int8
Generic wrappergenericbase, lora, int8, lora_int8, lora_kbit
GPT-J 6Bgptjbase, lora, int8, lora_int8
GPT-2gpt2base, lora, int8, lora_int8
GPT-OSS 20Bgpt_oss_20bbase, lora, int8, lora_int8, lora_kbit
GPT-OSS 120Bgpt_oss_120bbase, lora, int8, lora_int8, lora_kbit
LLaMAllamabase, lora, int8, lora_int8, lora_kbit
LLaMA 2llama2base, lora, int8, lora_int8, lora_kbit
Mambamambabase
MiniMaxM2minimax_m2base, lora, int8, lora_int8, lora_kbit
OPT 1.3Boptbase, lora, int8, lora_int8
Qwen3 0.6Bqwen3_0_6bbase, lora, int8, lora_int8, lora_kbit
Stable Diffusionstable_diffusionbase

INT4-style workflow

For models that expose *_lora_kbit, you can still use the generic K-bit API directly:

from xturing.models import GenericLoraKbitModel
model = GenericLoraKbitModel("/path/to/model")